
Scaling Up Decision Theoretic Planning to Planetary Rover Problems

Nicolas Meuleau' and Richard Deardent and Rich Washington'
X4SA AEXS Research Cefitei, Mail Stop 269-3

Moffet Field, CA 94035-1000
{nmeuleau, dearden, richw}@email.arc.nasa.gov

Abstract

Because of communication limits, planetary rovers must op-
erate autonomously during consequent durations. The abil-
ity to plan under uncertainty is one of the main components
of autonomy. Previous approaches to planning under uncer-
tainty in NASA applications are not able to address the chal-
lenges of hture missions, because of several apparent lim-
its. On another side, decision theory provides a solid princi-
pled framework for reasoning about uncertainty and rewards.
Unfortunately, there are several obstacles to a direct appli-
cation of decision-theoretic techniques to the rover domain.
This paper focuses on the issues of structure and concurrency,
and continuous state variables. We describes two techniques
currently under development that address specifically these
issues and allow scaling-up decision theoretic solution tech-
niques io pianetary rover planning problems involving a small
number of goals.

Introduction
There are many problems inherent in direct human con-
trol of remote devices such as planet exploratory rovers and
satellites: (i) Communication takes significant time. For in-
stance, the minimum delay for communicating with a rover
on the surface of Mars is roughly 20 minutes, making teleop-
eration very hazardous; (ii) There may be obstacles block-
ing the communication between Earth and the device. For
instance, the rover may be on the wrong side of the planet;
(iii) The Deep Space Network is the only way to commu-
nicate with these devices, and it is highly oversubscribed.
Therefore, remote rovers and satellites must be able to op-
erate autonomously over substantial periods of time. The
Mars Exploration Rovers (MER), for example, are designed
to communicate with the ground only twice per Martian day
and must operate autonomously the rest of the time.

Moreover, the surfaces of planets are very uncertain envi-
ronments. In the case of Mars, there is uncertainty about the
terrain, the meteoro!ogical conditions, arid the state of the
rover itself (position, battery charge, solar panels, compo-
nent wear, etc.), resulting in a great deal of uncertainty in the
duration, energy consumption, and outcome of the rover's
actions (Bresina et al. 2002). This may have a serious im-
pact on missions. It has been estimated that the 1997 Mars

QSS Group Inc.
Research Institute for Advanced Computer Science.

Pathfinder rover spent between 40% and 75% of its time do-
ing nothing because plans did not execute as expected.

The need for autonomy and robustness in the face of un-
certainty will grow as rovers become more capable and as
missions explore more distant planets. The MER rovers
require an average of 3 days to visit a single rock. How-
ever, with recent progress in areas such as automatic instru-
ment placement (Pedersen et al. 2003), multiple rock vis-
its in a single communication cycle will be possible in fu-
ture missions.' When this happens, it is probable that the
expectations of space scientists will increase dramatically
and that rovers will end up highly oversubscribed. More-
over, planning for Europa and Titan exploration will require
reasoning over much longer time frames, in more uncer-

MER will probably have a very low probability of success
in such a context, so that the robot would spend almost all
its time waiting for new orders from mission control. More-
over, planning for telescopes such as SOFIA or SIRTF also
demonstrates a need for planning under uncertainty for large
sets of tasks.

Planning systems that have been developed for plane-
tary rovers and other NASA applications typically use a
deterministic model of the environment and action effects
(Muscettola et al. 1998; Jbnsson et al. 2000; Estlin et al.
2002). Given a pre-specified set of goals, they produce a de-
terministic sequence of actions that achieves the goals under
nominal conditions. They do not model the uncertainty in
the domain, but instead rely on replanning to handle unex-
pected events. This straightforward approach presents sev-
eral drawbacks:
The tradeoff of the value and risk of goals: Greedily

achieving the highest priority goal can be a very poor
strategy. For instance, a rover might try single-mindedly
to get to a goal that is in fact unreachable, while neglect-
ing other goals that are slightly iess valuable but much
easier to reach. A fine trade-off between the value of a
goal and the likelihood of achieving it is necessary to act
opportunistically.

The choice of branch timdpoint: Waiting for failure to
change plans can also be very inefficient, since failure

&-:- Laill ewiroiiiiienis. Simpie UnconGitionai pians as used by

~

'This capability will be demonstrated during field tests at
NASA Ames Research Center in Fall 2004.

time can be too late to respond intelligently to the new sit-
uation. A system must consider changing its plans when it
can predict a possible failure. For instance, a rover should
change its route when it perceives a major obstacle instead
of waiting until it actually reaches the obstacle.

The problem of set-up actions: The prototypical exam-
ple of this problem is identifying the benefit of putting a
spare tire in the trunk before going on a car trip. Taking
the spare tire has no benefit on the nominal plan; however,
it will prove very useful if we have an unexpected flat tire.
In the context of Mars rovers, this problem appears when
choosing waypoints and preparing instruments. One may
prefer a waypoint not directly on the path to the nomi-
nal goal because alternative goals are more easily reached
from this waypoint.

These weaknesses may not have a big impact on current
Missions such as MER. However, they will become critical
as the missions' complexity, duration, and intervals between
communication episodes grow.*

Decision theory (DT) is a principled framework for rea-
soning about uncertainty, rewards, and costs (Blythe 1999;
Boutillier, Dean, & Hanks 1999). DT avoids the three pit-
falls of re-planning and JIC approaches: (i) it makes optimal
tradeoffs between the value of goals and plans, and the risk
associated with them; (ii) it selects optimal branch point^;^
(iii) it captures the necessity of performing set-up actions
each time there is benefit in doing so.

Theb NASA Ames Research Center (ARC) Limited Con-
tingency Planning (LCP) project-demonstrated in several
rover field tests (Pedersen et al. 2003)-attempted to ad-
dress the previous three shortcomings (Dearden et al. 2003).
It proposed several heuristics for selecting branch points and
goals using decision theoretic tools. The LCP project did not
formalize the whole problem of planning for Mars rovers
in the DT framework, but it identified three challenges to a
direct use of optimal algorithms such as dynamic program-
ming (DP):

1. Structure and concurrency: Models of Mars rovers are ex-
pressed in high-level propositional representations that al-
low concurrent execution of several actions. The com-

Just-In-Case (JIC) scheduling (Drummond, Bresina, & Swan-
son 1994) was used for automatic telescope scheduling. Although
it is not an approach based on re-planning, it falls in the same
paradigm: first it uses a deterministic, myopic model to generate an
initial plan; then it adds branches in the most likely failure points.
This is equivalent to waiting for failure before changing plans. The
success of JIC scheduling may be explained by some characteris-
tics of the domain of observation scheduling (notably, the fact that
the failure to complete a planned observation may easily be com-
pensated by adding a new observation to the schedule). However,
for the reasons exposed above, this heuristic does not perform as
well in the more complex domain of rover activity planning.

'DT is most often used to search for an optimal policy, that is,
a universal plan with one "branch" for each possible situation that
could be encountered at execution. However, it is also possible
to use a decision theoretic approach to find optimal plans of other
types, such as conformant plans (Hyafil & Bacchus 2003) and k-
contingency plans (Meuleau & Smith 2003).

plexity of the planning problem growth exponentially
with the size of these models.

2. The presence of multiple continuous state variables, such
as time, energy, position, temperature, and storage avail-
able. These variables make the search space (uncount-
ably) infinite;

3. A large number of possible goals: the complexity of the
problem grows exponentially with the number of goals;

These difficulties prohibit the use of existing approaches for
finding optimal or near-optimal solutions to problems in-
volving uncertainty faced at NASA.

In this paper, we quickly survey two research directions
currently under development at NASA ARC to tackle the
first two issues above, and make the decision-theoretic tech-
niques scalable to planetary rovers problems involving a
small number of goals. These results will be published in
more details in forthcoming papers.

Structure and Concurency
The first obstacle toward applying a full decision theoretic
approach to problems such as Mars rovers is their struc-
tured and concurrent nature. These problems can be ade-
quately modeled using the complex representation of clas-
sical AI planning including propositional, first-order, re-
lational and object-oriented representations (Jonsson et al.
2000; Bresina et al. 2002). The main issue in using DP
with structured representations is scalability: DP manipu-
lates fully grounded Markov states, which are conjunctions
of fluents, propositions or predicates. Thus the number
of states grows exponentially with the number of fluents,
propositions or predicates, and so does the complexity of
DP. This fact is well known and several approaches have
been developed to exploit representations of structure in de-
cision theoretic models (Boutillier, Dean, & Hanks 1999;
Boutilier, Dearden, & Goldszmidt 2000; Hoey et al. 1999).
Most of them rely on the idea of (approximate) model mini-
mization (or state aggregation) (Dean & Givan 1997): they
avoid redundant computation by manipulating sets of states
that produce similar effects, compactly represented in the
domain language, instead of individual states.

In addition, rover and spacecraft models often allow con-
current execution of several activities. For instance, the
rover can warm up an instrument while driving to a loca-
tion. A number of classical AI planning approaches support
concurrent actions. Most of them assume in simple model of
concurrency where several actions can be performed simul-
taneously, but all actions have the same duration of one unit
of time. More complex models allow concurrent execution
of actions with different duration. The EUROPA planner
developed at NASA ARC and currently used for rover plan-
ning is a constraint-based planner allowing complex tempo-
ral constraints and concurrency between activities (Jbnsson
et al. 2000). However, it assumes a deterministic model of
the environment. Although our long term goal is to be able
to introduce non-determinism in the rich models that allow
concurrent actions with different durations, the research de-
scribed here focuses on the simple models where all actions
have the same durations.

The most influential algorithm in the classical AI plan-
ning paradigm for concurrent planning is probably Blum and
Furst’s GraphPlan (GP) (Blum & Furst 1997). This algo-
rithm obtained tremendous success and inspired many ex-
tension. It works in two stages:
Plan graph construction: The (incremental) plan graph

(Smith & Weld 1998) is a bi-partite graph whose nodes
are either fluents that can possibly become true at some
time; or actions that can possibly be performed at some
point. In short, it represents all the fluents and actions
that are “reachable” at some point in time, given the ini-
tial conditions and the domain model. Causality links be-
tween fluents and actions are represented by the edges
of the graph: each fluent is linked to every action that
consumes it (that is, for which it is a precondition), and
each action is linked to every fluent that it produces. The
presence of two fluents in the plan graph indicates that
they are both reachable, but it does not mean that they are
both reachable at the same time (or even in the same run).
The plan graph also features binary exclusion constraints
(“mutexes”) between pairs of actions and fluents. A mu-
tex between two fluents indicates that they cannot both
be true at the same time, and a mutex between two ac-
tions shows that they cannot be performed concurrently.
Because they are only binary relations, mutexes represent
only a partial reachability analysis. For instance, three
fluents may be unreachable at the same time while there
is no (binary) mutex relation between any two of them.
In counterpart, the plan graph construction is polynomial
in the size of the problem, while a complete reachability
analysis would be exponential (because it requires enu-
merating all possible plans).

Goal regression: The next stage is planning itself: given
a goal as a set of fluents (sub-goals), we regress this goal
through the plan graph. That is, we enumerate all the pos-
sible ways to evolve from this set of sub-goals to the ini-
tial conditions by applying actions-including concurrent
actions-backwards from the sub-goals until a feasible
solution has been found. Although this search is poten-
tially exponential, the mutex information allows substan-
tial pruning. For instance, we can cease to regress a set of
sub-goals as soon as we recognize a mutex between two
of them. That saves the time that goal regression would
take to discover there is no way to satisfy this set of goals.
The search stops at the first feasible plan found.

This combination of a partial reachability analysis guiding
a complete goal regression has proved very efficient and
GraphPlan remains one of the most efficient planning algo-
rithms for concurrent planning.

In a classical ET approach, we do m t want to find n
feasible plan, but the best feasible plan (in terms of ex-
pected utility), so the search must continue until all plans
have been considered. Most algorithms use Bellman’s opti-
mality principle to avoid enumerating the complete policy-
space: As showed in (Boutillier, Brafman, & Geib 1998),
partial reachability information as computed by GP may also

40ne exception is the so-called policy-search approach.

be used to prune the DP search space in a fully sequential
planning framework (without concurrency). Pushing this
idea further, we have developed a PlanGraph Dynamic Pro-
gramming (PGDP) algorithm that uses a stochastic STRIPS
(Boutillier, Dean, & Hanks 1999) representation of the do-
main and combines three principles to accelerate the search
for an optimal plan: (i) Bellman’s optimality principle, as
in any instance of DP; (ii) model minimization to accelerate
DP; @) a p d a ! reachability analysis, in the form of mutex
relations between pairs of fluents, which is characteristic of
the GP algorithm. Moreover, it can handle a simple model
of concurrency. That is, it can output a plan with concurrent
activities if this is an optimal plan.

PGDP follows the same scheme as the original GP algo-
rithm. The first stage, plan-graph construction, is carried out
in exactly in the same way. The second stage, goal regres-
sion, is replaced by a process of back-propagation of utility
tables. This process plays a similar role, enumerating all
plans that can lead to the goal, but does not stop at the first
feasible solution found and continues until all plans in all
reachable states have (implicitly) been considered. The ba-
sic entities manipulated are utility tables, defined by:
0 A representation of the expected reward that can be ob-

tained under some policy. In simple cases, this is just a
real number. In a domain featuring continuous variables,
it can be a piecewise constant or linear function of the
continuous variables, as described in the next section.

0 A condition, that is a list of fluents that must hold to obtain
the utility encoded. To accelerate dominance tests (see
below), we maintain pointers in both directions between
utility tables and the fluents in their conditions: each flu-
ent node in the plan graph contains a list of pointers to
the tables having this fluent as condition, and each table
points to the fluent nodes in its condition list.

A table indicates that it is possible to get the reward encoded
in its value function if all the fluents in its condition are true.

PGDP is initialized by creating a table for each goal of
the planning problem. These tables are then backed up in an
asynchronous manner, until a steady state is obtained. The
basic operation of table back-up uses two principles:
Logical inference: one or several sub-goals in the condi-
tion list of the table are regressed through an action or a
set of actions. A new table is created where the regressed
sub-goals have been replaced by the action preconditions.
Mutual exclusion information is used at this level to filter
out all tables with mutex fluents in their condition.

DP back-up: the utility encoded in the newly created ta-
ble is obtained by composing the immediate effect (re-
source consumption, reward) of the action, and the long
term utiiity encoded in the parent table, as iii a c!assica!
DP back-up.

The algorithm also features a mechanism of table merging:
When a table is backed up, the newly created table is com-
pared with existing tables to ensure that dominated tables
are discarded and only a minimum set is kept. This opera-
tion is accelerated by using the system of pointers between
fluent-nodes of the plangraph and utility tables. This step

Problem

SepO3
SepO3 mod 1
SepO3 mod 2

random3-1
random3-2
randod-3

random5-1
random5-2
randod-3

locations

5
5
5

7
8
6

17
26
26

paths

4
6
7

10
12
8

36
74
64

goals

3
3
3

3
3
3

5
5
5

plan
graph nodes

80
84
86

120
132
104

200
3 12
292

plan
graph levels

10
10
10

9
9
10

10
12
11

plan graph
construction

0.06s
0.07s
0.08s

0.16s
0.19s
0.14s

0.92s
3.56s
2.90s

utility tables
back-prop.

0.05s
0.13s
0.31s

0.40s
0.44s
0.30s

20.12s
41.62s
37.52s

Table 1: PGDP simulation results. SepO3 is the problem used during the LCP field tests of Fall 2003. Other problem instances
where randomly generated.

is fundamental: it is where Bellman’s optimality principle
is used to prune the search. Each time that we discard a
dominated table, we abandon complete regions of the search
space that we know do not contain an optimal policy.

PGDP has been implemented and tested using a real
model of the K9 rover (the model used for LCP field tests of
Fall 2003).5 Table 1 presents preliminary complexity results
obtained with different problem instances in this domain. It
shows that PGDP produces optimal solutions to problems
involving three scientific objectives in less than one second,
and five objectives in less than one minute. Moreover, the
smallest of these problems cannot be solved in fewer than a
few hours if we disable either the partial reachability analy-
sis or the ability to use Bellman’s optimality principle. This
indicates that the algorithm is taking advantage of both prin-
ciples. PGDP is also used as a heuristic to recommend goals,
branch points and branch conditions to the incremental con-
tingency planner developed in the LCP project (Dearden er
al. 2003).

Continuous Variables
A characteristic of many of NASA application domains is
the existence of continuous state variables such as time,
battery levels, location, and available memory. Most of
these represent resources that constrain the planning prob-
lem. Moreover, most of the uncertainty in the domain results
from the effect of actions on these variables. In the Mars
rover domain, the biggest sources of uncertainty are the du-
ration and energy consumption of actions and the storage
space that pictures will require after compression. In con-
trast, the control framework is not completely continuous
because decisions are made at discrete decision steps. For-
mally, the problem is that of a discrete-step decision model,
such as an MDP, with several continuous state variables. The
continuous variables make the state space continuously infi-
nite and prevent a direct use of classical solution techniques.

Figure 1 shows the optimal value from the initial state of

’In this preliminary implementation, we assume deterministic
action consumptions and attach to each utility table a piecewise
constant value function, as explained in the next section.

a typical Mars rover problem as a function of two continu-
ous variables: the time and energy remaining (Bresina et al.
2002). The shape of this value function is characteristic of
the rover domain, as well as other domains featuring a finite
set of goals with positive utility and resource constraints.
Such a value function features a set of humps and plateaus,
each of them representing a region of the state space where
a particular goal (or set of goals) can be reached. The sharp-
ness of a hump or of the edges of a plateau reflects the un-
certainty attached to the plan leading to this goal. Moreover,
constraints on the minimal level of resource required to start
some actions (Bresina et al. 2002) introduce abrupt cuts in
the regions. This results in a landscape with vast regions
where the expected reward is nearly constant. They corre-
spond to regions of the state space where the optimal policy
is the same, and the probability distribution on future trajec-
tories induced by this policy is nearly constant.

Our current research aims at developing algorithms able
to exploit such structure by grouping together states belong-
ing to the same plateau, while reserving a fine discretiza-
tion for the regions of the state space where it is the most
useful (such as the curved hump where there is more time
and energy available). The algorithms we are developing
are largely inspired by previous work on time-dependent
MDPs (TDMDPs) (Boyan & Littman 2000), that features
a single continuous variable representing time, to the multi-
dimensional case. They implement the same basic idea as
most structured DP algorithm, that is, model minimization.
Here, it is based on a form of lazy discretization whose
principle is the following: instead of naively imposing an
arbitrary discretization of state variables and then deduc-
ing a discretization of action effects from it, we do the in-
verse. That is, we start by building a discrete model of ac-
tion effects on continuous variables, possibly using the same
grid size (in each dimension) as in the naive approach. In
the planetary rover domain, this consists of discretizing the
resource consumption of actions (which can easily handle
dependencies between ddferent resources). Then, assum-
ing that immediate rewards are piecewise constant functions
of the continuous variables, a minimal discretization of the
state space is computed at the same time as DP is performed

Figure 1: Value function in (Bresina et al. 2002).

(that is, backward from the planning horizon to the initial
time). The value function at each step is represented by
a piecewise constant function of the continuous variables,
and the set of pieces over which it is defined is kept mini-
mal to render only the significant differences between states,
given the discrete model of action effects. States matching
the same piece of value function: (i) have the same optimal
pladpolicy, (ii) generate the same probability distribution
on future history, in terms of actions performed, rewards re-
ceived, and pieces of value functions traversed under this
optimal policy (assuming the discrete model of action ef-
fects). Given a fixed discretization step in each dimension,
lazy discretization attains exactly the same accuracy as naive
discretization, but it avoids all redundant computation.

This approach has been tested on prototype rover prob-
lems (Feng et al. 2004). Our implementation uses kd-tress
(Friedman, Bentley, & Finkel 1977) to store piecewise con-
stant value functions defined over rectangular partitions, a
mechanism for merging adjacent pieces with same value,
and we are currently adding smart operators to limit the
number of pieces created at each DP back-up. Figure 1 was
obtained in the order of a few minutes using this technique
with the highest level of discretization (of action outcomes).
It required in the order of one day of computation to solve
the same problem using a Monte Carlo approach and a naive
discretization, and the quality of the solution was lesser (see
the figure in (Bresina et al. 2002)).

Following (Boyan & Littman 2000), we further increased
the model by allowing piecewise linear reward functions.
For instance, to take into account the illumination of a rock,
the value of a picture of it could vary (piecewise) linearly
with the time of the day. Value functions are represented
as a rectangular partition of the state space with a set of

Figure 2: Value function of a variant of (Bresina et al. 2002)
with piecewise linear rewards.

linear functions attached to each (rectangular) piece. Tech-
niques from POMDP theory are used to perform Bellman
back-ups, resulting in a form of partitioned incremental
pruning algorithm (Kaelbling, Littman, & Cassandra 1998;
Cassandra, Littman, & Zhang 1997). See (Feng et al. 2004)
for details. Figure 2 provides an example of value function
obtained with this representation.

These experimental results were obtained using toy prob-
lems, and not the real model used for testing PGDP. As ex-
plained above, the real problems have a complex structure
involving both its discrete and continuous state variables.
To address these problems, our future work will consist of
integrating the techniques presented in this section with the
PGDP algorithm presented in the previous section. In a pre-
liminary implementation, a piecewise constant representa-
tion of the value function defined over the whole continuous
variables space may be attached to each utility table, instead
of the single scalar value. However, it is likely that any of
these value functions share structure. In the extreme case,
two discrete states may have identical value functions, in
which case we would like to combine them. In other cases
only a subset of the continuous state may match, and we
may be able to interleave splits on discrete state with splits
on continuous state in the kd-tree to capture the structure in
mixed models efficiently.

Conclusions
The techniques described in this paper make it possible to
compute optimal solutions to real instances of Mars rovers
problems involving a small number of goals. The solutions
proposed here fail when the number of goals to be attained
increases, because the underlying MDP is exponential in the

I

number of goals. Therefore, there is no other alternative
than heuristic and approximate approaches to solve prob-
l e m involving a few tens of goals. We are currently ex-
ploring heuristic approaches using goal-based hierarchical
models as a solution to the large number of possible goals
that a real mission scenario may contain.

Acknowledgments
This work was supported by the NASA Intelligent Systems
Program. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not reflect the views of NASA.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:28 1-300.
Blythe, J. 1999. Decision-theoretic planning. AI Magazine

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artijicial Intelligence 12 1 :49-107.
Boutillier, C.; Brafman, R.; and Geib, C. 1998. Structured
reachability analysis for Markov decision processes. In
Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence. 24-32.
Boutillier, C.; Dean, T.; and Hanks, S. 1999. Decision the-
oretic planning: structural assumptions and computational
leverage. Journal of AI Research 11: 1-94.
Boyan, J., and Littman, M. 2000. Exact solutions to time-
dependent MDPs. In Advances in Neural Information Pro-
cessing Systems 13. 1-7.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washington, R. 2002. Planning under con-
tinuous time and resource uncertainty: A challenge for AI.
ln Proceedings of the Eighteenth Conference on Uncer-
tainty in Artificial Intelligence.
Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental Pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial In-
telligence, 54-61.
Dean, T., and Givan, R. 1997. Model minimization in
markov decision processes. In Proceedings of the Four-
teenth National Conference on ArtiJcial Intelligence, 106-
111.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.;
and Washington, R. 2003. Incremental contingency plan-
ning. In ICAPS’O3: Proceedings of the Workshop on Plan-
ning under Uncertainty and Incomplete Information, 415-
428.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
In-Case scheduling. In Proceedings of the Twelfth National
Conference on Artijcial Intelligence, 1098-1 104.
Estlin, T.; Fisher, E; Gaines, D.; Chouinard, C.; Schaffer,
S . ; and Nesnasg, I. 2002. Continuous planning and execu-
tion for an autonomous rover. In Proceedings of the Third

20(2):37-54.

International NASA Workshop on Planning and Scheduling
for Space.
Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R.
2004. Dynamic programming for structured continuous
Markov decision problems. In Proceedings of the Twen-
tieth Conference on Uncertainty in Artijkial Intelligence.
To appear.
Friedman, J.; Bentley, J.; and Finkel, R. 1977. An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical Software

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of the Fifreenth Conference on Uncertainty in
Artificial Intelligence.
Hyafil, N., and Bacchus, F. 2003. Conformant probabilistic
planning via CSPs. In Proceedings of the Thirteenth Inter-
national Conference on Automated Planning and Schedul-
ing, 205-214.
J h s o n , A.; Moms, P.; Muscettola, N.; Rajan, K.; B.; and
Smith. 2000. Planning in interplanetary space: theory and
practice. In Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling,

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
ArtiJcial Intelligence 101:99-134.
Meuleau, N., and Smith, D. 2003. Optimal limited contin-
gency planning. In Proceedings of the Nineteenth Confer-
ence on Uncertainty in Artificial Intelligence, 411426.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: To boldly go where no AI system has gone
before. Artificial Intelligence 103(1-2):5-47.
Pedersen, L.; Bualat, M.; Lees, D.; Smith, D.; and Wash-
ington, R. 2003. Integrated demonstration of instru-
ment placement, robust execution and contingent planning.
In Proc. of the 7th Int. Symp. on Artificial Intelligence,
Robotics and Automation in Space.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Proceedings of the Fifreenth National Conference on Arti-
ficial Intelligence, 889-896.

3(3):209-226.

117-186.

